M1000 series remote I/O module

User 's Manual

Rev: D

Smacq Technologies. Co., Ltd Smacq.com Smacq.cn

Statement

Copyright

© 2019 Smacq Technologies. Co., Ltd. All rights reserved

Without prior consent and written permission, no content of this manual may be copied, modified, or deleted.

Trademark information

Smacq It is a registered trademark of Smacq Technologies. Co., Ltd. The other products and company names mentioned in this document are trademarks or business names of their respective companies.

Other statements

- The information provided in this document may be modified and updated in subsequent versions without prior notice.
- Smacq Technologies. Co., Ltd. does not provide any express or implied warranties with respect to this document and the information contained therein, including but limited to implied warranties of the marketability and suitability for a particular purpose of the product.
- Smacq Technologies. Co., Ltd. shall not be liable for any errors or inaccurate descriptions that may be contained in this document, or for any incidental or consequential damages resulting from the information and functions provided in the manual, or from the use of this document.
- Smacq Technologies. Co., Ltd. reserves the right to change product specifications, prices, and decide whether to discontinue production.

Contact us

If you have any questions or need assistance while using this product or this document, please contact us via:

Phone: (86-10) 52482802 E-mail: <u>service@smacq.com</u> Website: <u>http://www.smacq.com</u> <u>http://www.smacq.cn</u>

Safety requirements

Warning: Only connect voltage within the specified range. If the voltage exceeds the specified range, it may cause equipment damage and even affect personal safety. The voltage range that can be connected to each port is detailed in the product specification section.

Warning: Do not attempt to operate the device in any other way not mentioned in this document. Incorrect operation of equipment may pose a danger. When the equipment is damaged, the internal security protection mechanism will also be affected.

Warning: Do not attempt to replace device components or modify the device using other methods not mentioned in this document. Do not repair the product yourself when it malfunctions.

Warning: Do not use the equipment in environments where explosions may occur or in the presence of flammable smoke. If necessary for such environments, please place the device in a suitable enclosure.

Warning: During the operation of the warning device, all chassis covers and filling panels must be closed.

Warning: For equipment with exhaust vents, do not insert foreign objects into the vents or block the air flow through the vents.

Measurement category

Warning: This device can only be used in measurement category I (CAT I). Do not use this device to connect signals or perform measurements in measurement categories II/III/IV.

Measurement category description

Measurement Category I (CAT I) refers to measurements taken on circuits that are not directly connected to the main power supply. For example, measuring circuits that are not derived from the main power source, especially circuits derived from protected (internal) main power sources. In the latter case, the instantaneous stress will change. Therefore, users should understand the instantaneous tolerance of the device.

Measurement Category II (CAT II) refers to measurements taken on circuits directly connected to low-voltage equipment. For example, measuring household appliances, portable tools, and similar devices.

Measurement Category III (CAT III) refers to measurements conducted in building equipment. For example, measurements are taken on distribution boards, circuit breakers, circuits (including cables, busbars, junction boxes, switches, sockets) in fixed equipment, as well as industrial equipment and certain other devices (such as fixed motors permanently connected to fixed installations).

Measurement category IV (CAT IV) refers to measurements taken at the source of low-voltage equipment. For example, measurements taken on electricity meters, primary over Current protection equipment, and pulse control units.

Environment

Temperature	
Operation	0°C~55°C
Storage	-40°C~85°C
Humidity	
Operation	5% RH~95% RH, non-condensing
Storage	5% RH~95% RH, non-condensing
Pollution level	2
Highest altitude	2000m

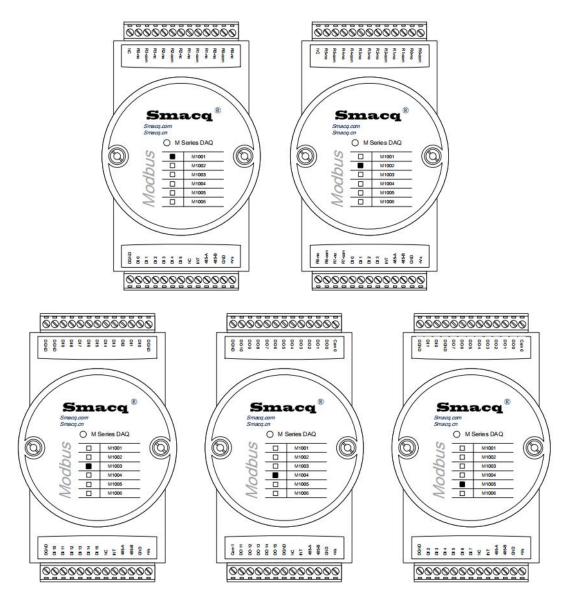
Pollution level description

Pollution level 1: No pollution, or only dry non-conductive pollution occurs. This pollution level has no impact. For example, a clean room or an air-conditioned office environment.

Pollution level 2: Generally only dry non-conductive pollution occurs. Sometimes temporary conduction may occur due to condensation. For example: general indoor environment.

Pollution level 3: Conductive pollution occurs, or dry non-conductive pollution becomes conductive due to condensation. For example, an outdoor environment with a canopy.

Pollution Level 4: Permanent conductive pollution caused by conductive dust, rainwater, or snow. For example: outdoor places.


Recycling precautions

Warning: Some substances contained in this product may be harmful to the environment or human health. To avoid releasing harmful substances into the environment or endangering human health, it is recommended to recycle this product using appropriate methods to ensure that most materials can be reused or recycled correctly. For information on handling or recycling, please contact local professional organizations.

1.Product Introduction

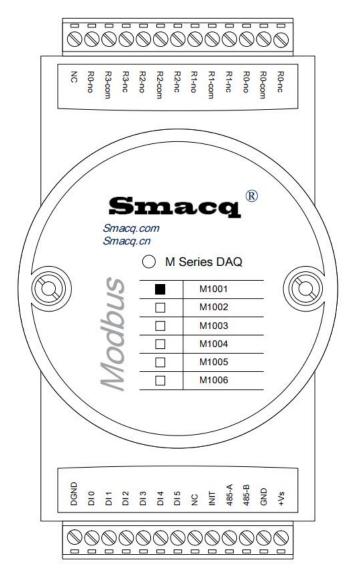
1.1. Overview

Overview

The M1000 series remote I/O module is a set of computer interface modules based on Modbus RTU. M1000 is remotely controlled through the standard Modbus RTU protocol, with isolated digital inputs and relay driven digital outputs, and built-in relay outputs.

Feature point

- Using standard Modbus RTU protocol
- Built-in Watchdog Timer will automatically reset the module in case of system failure
- Digital output can reach up to 50V
- The relay can pass a maximum current of 5A
- Built in relay action counter is used to monitor the number of relay actions
- 9-24V power supply voltage range
- DIN-Rail Mounting and Piggyback Stack

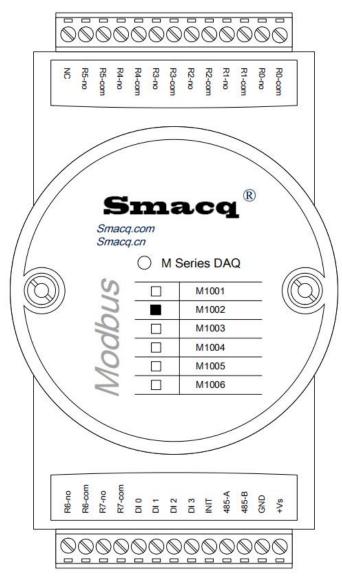

Applications

- Remote data acquisition
- Process monitoring
- Industrial process control
- Energy management
- Monitor
- Safety system
- Laboratory automation
- Building automation
- Product testing
- Direct digital control

1.2. Product specifications

Connection		
Interface	RS-485 (2-Wire)	
Baud rate (bps)	1200,2400,4800,9600(Default),19200,38400,57600,115200	
Checksum	NONE, ODD, EVEN(Default)	
Stop bits	1(Default), 2	
Protocol	Modbus RTU	
Watchdog Timer	0.1 seconds to 40 seconds	
Power Supply		
Input Voltage	9-30 VDC	
Electric Current	M1001: 200mA (Max) @ 12V	
	M1002: 150mA (Max) @ 12V	
	M1003: 50mA (Max) @ 12V	
	M1004: 100mA (Max) @ 12V	
	M1005: 70mA (Max) @ 12V	

Common Specifications

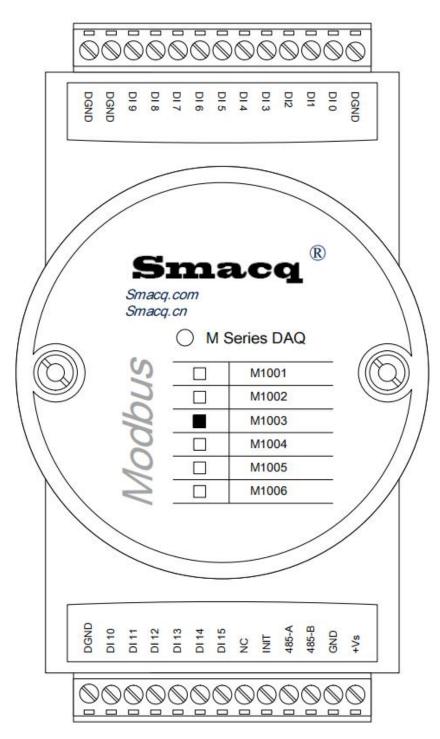


M1001 Wiring Definition

M1001 Product Specification

Digital Input	
Channels	6
Max Input Voltage	70V
Logic High Level	3~70V
Logic Low Level	0~2V
Isolation voltage	1500V
Relay Output	
Channels	4
Relay Type	С-Туре
Contact resistive load	3A@ 250VAC, 3A@30VDC
Electrical endurance	1 * 10 ⁵ ops (NO/NC, 3A@250VAC, resistive load, 25°C, 1.5s interval switch)
Operate time	8ms
Release time	4ms
insulation resistance	1000MΩ(500VDC)

Smacq

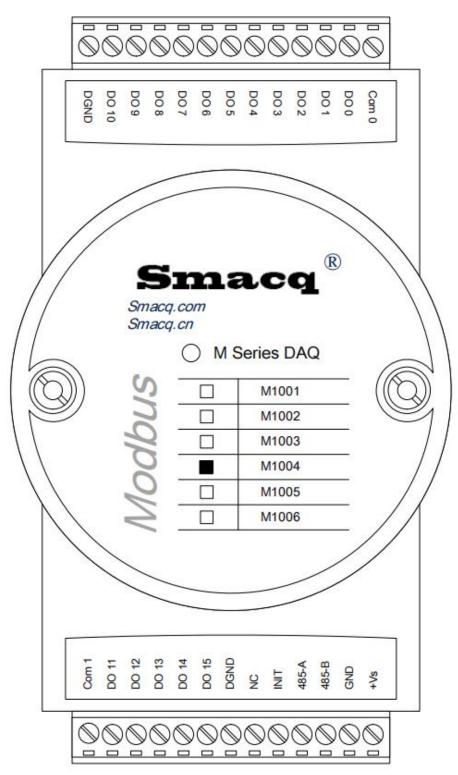


M1002 Wiring Definition

M1002 Product Specification

Digital Input	
Channels	4
Max Input Voltage	70V
Logic High Level	3~70V
Logic Low Level	0~2V
Isolation voltage	1500V
Relay Output	
Channels	8
Relay Type	А-Туре
Contact resistive load	5A@ 250VAC, 5A@30VDC
Electrical endurance	1 * 10 ⁵ ops (3A@250VAC, resistive load, 25°C, ON 1s and OFF 9s)
Operate time	10ms
Release time	5ms
insulation resistance	1000MΩ(500VDC)

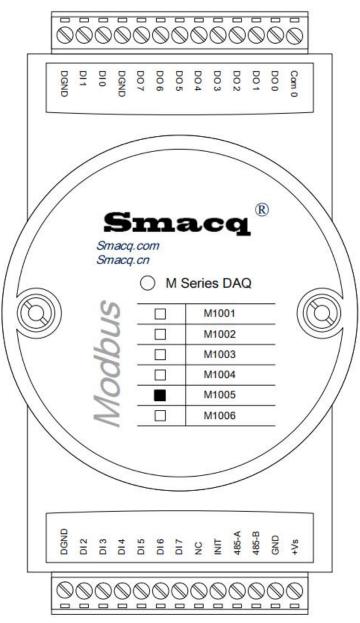
Smacq



M1003 Wiring Definition

M1003 Product Specification

Digital Input	
Channels	16
Max Input Voltage	70V
Logic High Level	3~70V
Logic Low Level	0~2V
Isolation voltage	1500V


Smacq

M1004 Wiring Definition

M1004 Product Specification

Digital Output	
Channels	16
Output Type	Darlington Transistor
Voltage range	5-50VDC
Current range	500mA

M1005 Wiring Definition

M1005 Product Specification

Digital Input	
Channels	8
Max Input Voltage	70V
Logic High Level	5~70V
Logic Low Level	0~3V
Isolation voltage	1500V
Digital Output	
Channels	8
Output Type	Darlington Transistor
Voltage range	5-50VDC
Current range	500mA

2.Product unpacking and packing list

2.1. Product unboxing

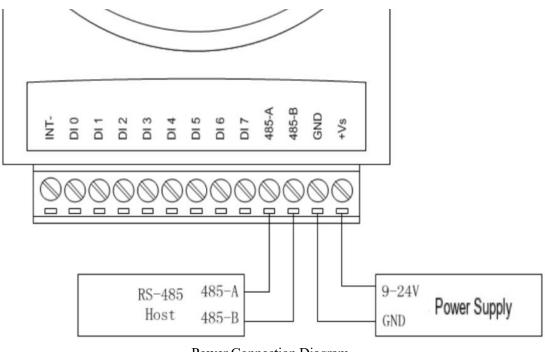
To prevent equipment damage from electrostatic discharge (ESD), please note the following:

- Please wear a grounded wristband or touch a grounded object first to ensure that the human body is grounded.
- Before removing the equipment from the packaging, please first place the anti-static packaging in contact with a grounded object.
- Do not touch the exposed pins of the connector.
- Please place the device inside an anti-static rod when not in use.

If the product is damaged after unpacking, please contact us promptly.

2.2. Packing list

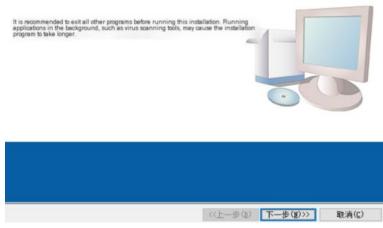
Name	Specification Description	Quantity	
M1000	M1000 Remote I/O Module	1	
Include Attachments			
Wiring terminals	13 Pin/Green/3.81	2	


3.Installation and simple testing

3.1. Hardware install

Before installation and debugging, the following equipment needs to be prepared:

- M1000 Remote I/O Module
- A Windows series computer with RS-485 interface
- A DC Power Supply (9-24V)
- A USB to RS-485 converter, such as SDS1001(if the computer does not have an RS-485 interface)


Connect the power supply and RS-485 cable according to the instruction in the following diagram. When selecting power cables, due to the limitation of DC voltage drop, using thicker wires would be more suitable. In addition, long wires can also cause interference to communication lines. It is best to use shielded twisted pair cables that comply with EIA RS-485 when selecting RS-485 cables to reduce interference.

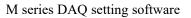
Power Connection Diagram

3.2. Software installation

We provide an application for configuring, detecting, and easy-to-use M1000 series remote I/O modules, which can only be installed on the Windows desktop operating system. Double click to run setup. exe for installation.

Software installation diagram

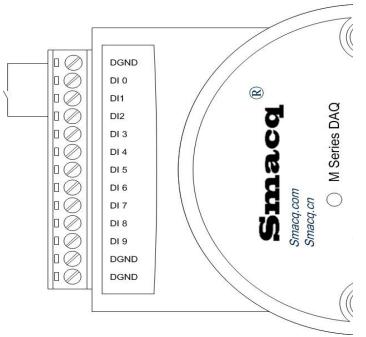
3.3. Simple testing

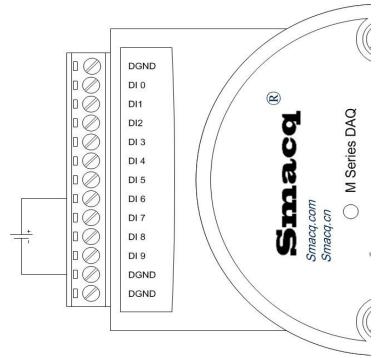

The M1000 series remote I/O module is set to its initial value before leaving the factory, as shown in the table below. If the settings of the M1000 series remote I/O module have been modified and the settings have been forgotten, a wire can be used to connect the Initiate and GND terminals, and then the power of the M1000 can be turned on. The LED indicator of the M1000 will flash three times at a frequency of 1Hz, and then disconnect the connection between the Initiate and GND. At this time, the M1000 remote I/O module will be restored to its factory default values.

Parameter	Default value	
485 Address	0x01	
Baud rate	9600	
Checksum	EVEN	
Stop bit	1	

Table 1 Default Value List

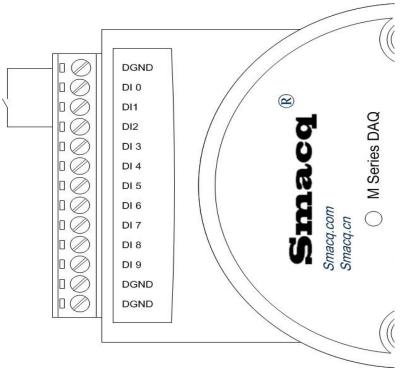
Run the M Console configuration software, in the figure below. Please refer to the "M Console Quick Use Guide" for software operations.

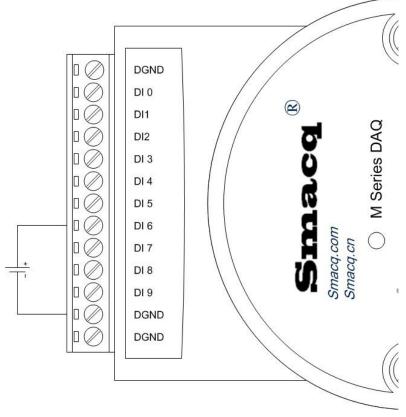

🔁 Dev	ice List				Module selection
Com	Baud	Slave ID	Model	SN	COM5 9600 1 2111 65535
	0	0	0	0	50
	0	0	0	0	Basic Config
	0	0	0	0	Function Config
	0	0	0	0	
	0	0	0	0	Data logger
	0	0	0	0	
	0	0	0	0	
	0	0	0	0	Exit


4.Digital input

4.1. Isolate digital input

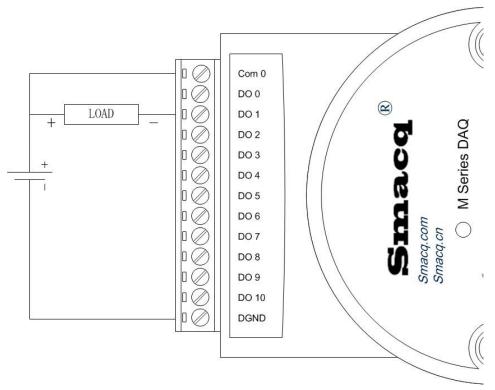
In the M1000 series remote I/O module, M1001, M1003, M1005 are equipped with isolated digital input channels. The isolated digital input channels are suspended at a high level and can connect Dry and Wet contact.


Isolation type digital input channel connected to Dry contact


Isolation type digital input channel connected to Wet contact

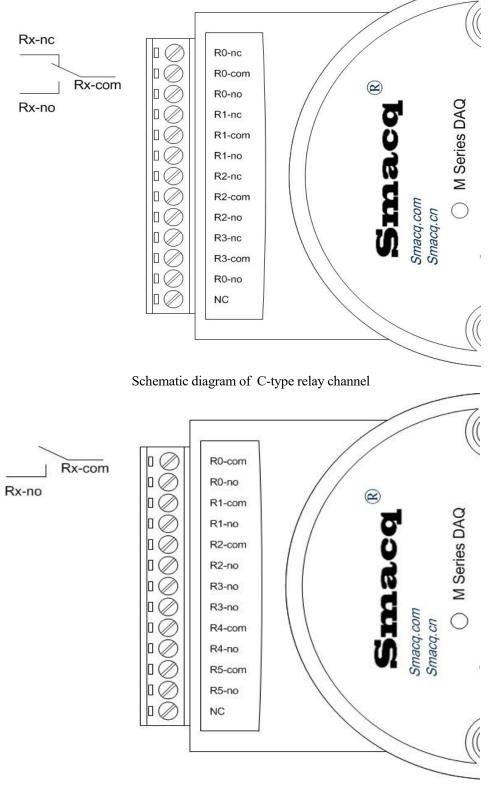
4.2. Non-isolated digital input

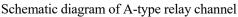
The M1002 is equipped with Non-isolated digital input channels. The digital input channels are suspended at a high level and can connect Dry and Wet contact.


digital input channel connected to Dry contact

digital input channel connected to Wet contact

5. Digital output


In the M1000 series remote I/O module, M1004 and M1005 are equipped with isolated digital output channels.



Isolation type digital output wiring diagram

6. Relay

In the M1000 series remote I/O module, M1001 is equipped with 4 C-type relay channels and M1002 is equipped with 8 A-type relay channels.

7. Programming instructions

The M1000 series remote I/O module is a set of computer interface modules based on Modbus RTU, and its programming rules follow The relevant conventions of Modbus RTU protocol.

For the convenience of different application scenarios, the M1000 series remote IO module is equipped with two versions of MODBUS address schemes, namely V1.0 and V2.0. The V1.0 version is a non offset address scheme, while V2.0 is an offset address scheme. Since the release of this manual, V2.0 is the default setting. If necessary, the version can be switched through the M Console software.

Coil/Register Address	V1.0 Modbus Message Address	V2.0 Modbus Message Address
1~9999	1~9999, 0x000~0x270F	0~9998, 0x0000~0x270E
10001~19999	10001~19999, 0x2711~0x4E1F	0~9998, 0x0000~0x270E
30001~39999	30001~39999, 0x7531~0x9C3F	0~9998, 0x0000~0x270E
40001~49999	40001~49999, 0x9C41~0xC34F	0~9998, 0x0000~0x270E

Comparison table between coil/register address and Modbus message address.

MODBUS RTU Command Message Description

For the convenience of users who are using the Modbus RTU protocol for the first time, here are several commonly used Modbus command messages as examples. If you are already familiar with the Modbus RTU protocol, you can directly view the following mapping table.

01 Function code

Used to read the status of the coil (DO)

To read the status of 8 coils starting from address 1 of a module, the host **sends** the following command:

Module address	Function code	Coil address	Read the number of coils	CRC verification
0x01	0x01	0x0000	0x0008	2-byte CRC check

The module **returns** the following data:

0x01 0x01 0x05 2-byte CRC check	Module address	Function code	Byte count	data	CRC verification
	0x01	0x01	0x01	0x05	2-byte CRC check

The state of each coil corresponds to one bit of data, and 8 coils correspond exactly to one byte of data. If 9-16 coils of data are read at a time, the byte count is 2, and so on. The binary representation of data 0x05 is 0000 0101, indicating that DO0 and DO2 states are 1, and the remaining DO states are 0.

02 Function code

Used to read discrete quantity (DI) states

To read the 8 discrete states of a module starting from address 10001, the host sends the following command:

Module address	Function code	Coil address	Read the quantity of discrete quantities	CRC verification
0x01	0x02	0x0000	0x0008	2-byte CRC check

The module **returns** the following data:

Module address	Function code	Byte count	data	CRC verification
0x01	0x02	0x01	0x05	2-byte CRC check

Each discrete state corresponds to one bit of data, and 8 coils correspond to exactly 1 byte of data. If 9-16 coils of data are read at a time, the number of bytes is 2, and so on. The binary representation of data 0x05 is 0000 0101, indicating that DI0 and DI2 are in the 1 state, and the remaining DO states are in the 0 state.

03 Function code

Used for reading and holding registers

To read the status of three registers starting from address 40201 in a module, the host **sends** the following command:

Module address	Function code	Register address	Read the number of registers	CRC verification
0x01	0x03	0x00C8	0x0003	2-byte CRC check

The module **returns** the following data:

Module address	Function code Byte count		data	CRC verification	
0x01	0x03	0x06	0x0001 0023 0005	2-byte CRC check	

0x0001 represents the data of register 40201, 0x0023 represents the data of register 40202, and 0x0005 represents the data of register 40203 For the specific meaning of the data, please refer to the Modbus mapping table.

04 Function code

Used for reading input registers

To read the status of the three registers starting from address 30101 in a module, the host **sends** the following command:

Module address	Function code	Register address	Read the number of registers	CRC verification
0x01	0x04	0x0064	0x0003	2-byte CRC check

The module **returns** the following data:

Module address Function code Byte count		data	CRC verification	
0x01	0x04	0x06	0x0001 0023 0005	2-byte CRC check

0x0001 is the data of register 30101, 0x0023 is the data of register 30102, and 0x0005 is the data of register 30103 For the specific meaning of the data, please refer to the Modbus mapping table.

05 Function code

Used for writing a single coil (DO)

To control the coil status of address 1 in a module, the host sends the following command:

Module address	Function code	Coil address	Coil status	CRC verification
0x01	0x05	0x0000	0xFF00 (set to 1)	2-byte CRC check
			0x0000 (set to 0)	

The module **returns** the same data as the **sent** content.

06 Function code

Used for writing and holding registers

If it is necessary to write register data with address 40201 to a module, the host sends the following command:

Module address	Function code	Register address	data	CRC verification
0x01	0x06	0x00C8	0x001C	2-byte CRC check

The module **returns** the same data as the **sent** content.

15 (0x0F) Function code

Used for writing multiple coils (DO)

To read the status of the 8 coils starting from address 1 of a module, the host sends the following command:

Module address	Function code	Coil address	Number of coils	Byte count	data	CRC verification
0x01	0x0F	0x0000	0x0008	0x01	0x0	2-byte CRC
					5	check

The state of each coil corresponds to one bit of data, and 8 coils correspond exactly to one byte of data. If 9-16 are written in a single time. The number of bytes for each coil's data is 2, and so on. The binary representation of data 0x05 is 0000 0101, which represents DO0 and DO2 has a state of 1, while the remaining DO states are 0.

The module **returns** the following data:

Module address	Function code	Coil address	Number of coils	CRC verification
0x01	0x0F	0x0000	0x0008	2-byte CRC check

16 (0x10) Function code

Used to write multiple hold registers

If you need to read the data from two registers of a module starting from address 40201, the host **sends** the following command:

Module address	Function code	Register address	Number of	Byte count	data	CRC
			registers			verification
0x01	0x10	0x00C8	0x0002	0x04	0x0001 0023	2-byte CRC check

The data of each register corresponds to 2 bytes of data, and the data of 2 registers is 4 bytes, and so on. 0x0001 is the data of register 4101, and 0x0023 is the data of register 4102.

The module **returns** the following data:

Module address	Function code	Register address	Number of registers	CRC verification
0x01	0x10	0x00C8	0x0002	2-byte CRC check

Address 4X	Function	Explain	Attribute	Command
40201	485 Address	1-255	Read/Write	0x03,0x06,0x10
40202	Serial port settings	 0-3 bits: Baud rate ^[1] 4-5 bits: Checksum ^[2] 6-7 bits: Stop bit ^[3] 	Read/Write	0x03,0x06,0x10
40203	Watchdog	0-255 0: Turn off the Watchdog 1-255: Set Watchdog Time (Units 100ms)	Read/Write	0x03,0x06,0x10
40204	Model		Read	0x03
40205	Version number		Read	0x03
40206	Serial number		Read	0x03

M1000 Series Remote I/O Module Universal Function Modbus Mapping Table

[1]Baud rate comparison table

Baud rate
1200
2400
4800
9600
19200
38400
57600
115200

[2]Checksum type comparison table

Set value	Parity
0	NONE
1	ODD
2 (Default)	EVEN

[3]Stop bit comparison table

Set value	Stop bit
0 (Default)	1
1	2

Taking a baud rate of 9600, a stop bit of 2, and even parity as an example, the serial port setting value is 0x0063 (01100011).

M1001 Remote I/O Module Modbus Mapping Table

Address 0X	Channel	Function	Attribute	Command
00001	R 0	Relay output	Read/Write	0x01,0x05,0x0F
00002	R 1	Relay output	Read/Write	0x01,0x05,0x0F
00003	R 2	Relay output	Read/Write	0x01,0x05,0x0F
00004	R 3	Relay output	Read/Write	0x01,0x05,0x0F

Address 1X	Channel	Function	Attribute	Command
10001	0	Digital input	Read	0x02
10002	1	Digital input	Read	0x02
10003	2	Digital input	Read	0x02
10004	3	Digital input	Read	0x02
10005	4	Digital input	Read	0x02
10006	5	Digital input	Read	0x02
10007	6	Digital input	Read	0x02
10008	7	Digital input	Read	0x02

Address 3X	Channel	Function	Attribute	Command
30101	0	Relay count low bit	Read	0x04
30102	0	Relay count high bit	Read	0x04
30103	1	Relay count low bit	Read	0x04
30104	1	Relay count high bit	Read	0x04
30105	2	Relay count low bit	Read	0x04
30106	2	Relay count high bit	Read	0x04
30107	3	Relay count low bit	Read	0x04
30108	3	Relay count high bit	Read	0x04

Address 4X	Channel	Function	Attribute	Command
40181	R0-3	Relay power on value setting 0: Default value 1: Last value ^[1]	Read/Write	0x03,0x06,0x10
40182	R0-3	Relay default ^[2]	Read/Write	0x03,0x06,0x10

[1]The last value indicates that the relay output remains in the same state as before the module was powered on.

[2]The low 0-3 bits correspond to the states of relays R0-R3. Taking R1 and R3 outputs ON and other channels are OFF as an example, the set value is 0x000A (00001010)

M1002 Remote I/O Module Modbus Mapping Table

Address 0X	Channel	Function	Attribute	Command
00001	R 0	Relay output	Read/Write	0x01,0x05,0x0F
00002	R 1	Relay output	Read/Write	0x01,0x05,0x0F
00003	R 2	Relay output	Read/Write	0x01,0x05,0x0F
00004	R 3	Relay output	Read/Write	0x01,0x05,0x0F
00005	R 4	Relay output	Read/Write	0x01,0x05,0x0F
00006	R 5	Relay output	Read/Write	0x01,0x05,0x0F
00007	R 6	Relay output	Read/Write	0x01,0x05,0x0F
00008	R 7	Relay output	Read/Write	0x01,0x05,0x0F

Address 1X	Channel	Function	Attribute	Command
10001	0	Digital input	Read	0x02
10002	1	Digital input	Read	0x02
10003	2	Digital input	Read	0x02
10004	3	Digital input	Read	0x02

Address 3X	Channel	Function	Attribute	Command
30101	R 0	Relay count low bit	Read	0x04
30102	R 0	Relay count high bit	Read	0x04
30103	R 1	Relay count low bit	Read	0x04
30104	R 1	Relay count high bit	Read	0x04
30105	R 2	Relay count low bit	Read	0x04
30106	R 2	Relay count high bit	Read	0x04
30107	R 3	Relay count low bit	Read	0x04
30108	R 3	Relay count high bit	Read	0x04
30109	R 4	Relay count low bit	Read	0x04
30110	R 4	Relay count high bit	Read	0x04
30111	R 5	Relay count low bit	Read	0x04
30112	R 5	Relay count high bit	Read	0x04
30113	R 6	Relay count low bit	Read	0x04
30114	R 6	Relay count high bit	Read	0x04
30115	R 7	Relay count low bit	Read	0x04
30116	R 7	Relay count high bit	Read	0x04

Address 4X	Channel	Function	Attribute	Command
40181	R 0-7	Relay power on value setting 0: Default value 1: Last value ^[1]	Read/Write	0x03,0x06,0x10
40182	R 0-7	Relay default ^[2]	Read/Write	0x03,0x06,0x10

[1]The last value indicates that the relay output remains in the same state as before the module was powered on.

[2]The low 0-7 bits correspond to the states of relays R0-R7. Taking R1 and R3 outputs ON and other channels are OFF as an example, the set value is 0x000A (00001010)

Address 1X	Channel	Function	Attribute	Command
10001	0	Digital input	Read	0x02
10002	1	Digital input	Read	0x02
10003	2	Digital input	Read	0x02
10004	3	Digital input	Read	0x02
10005	4	Digital input	Read	0x02
10006	5	Digital input	Read	0x02
10007	6	Digital input	Read	0x02
10008	7	Digital input	Read	0x02
10009	8	Digital input	Read	0x02
10010	9	Digital input	Read	0x02
10011	10	Digital input	Read	0x02
10012	11	Digital input	Read	0x02
10013	12	Digital input	Read	0x02
10014	13	Digital input	Read	0x02
10015	14	Digital input	Read	0x02
10016	15	Digital input	Read	0x02

M1003 Remote I/O Module Modbus Mapping Table

M1004 Series Remote I/O Module Modbus Mapping Table

Address 0X	Channel	Function	Attribute	Command
00001	0	Digital output	Read/Write	0x01,0x05,0x0F
00002	1	Digital output	Read/Write	0x01,0x05,0x0F
00003	2	Digital output	Read/Write	0x01,0x05,0x0F
00004	3	Digital output	Read/Write	0x01,0x05,0x0F
00005	4	Digital output	Read/Write	0x01,0x05,0x0F
00006	5	Digital output	Read/Write	0x01,0x05,0x0F
00007	6	Digital output	Read/Write	0x01,0x05,0x0F
00008	7	Digital output	Read/Write	0x01,0x05,0x0F
00009	8	Digital output	Read/Write	0x01,0x05,0x0F
00010	9	Digital output	Read/Write	0x01,0x05,0x0F
00011	10	Digital output	Read/Write	0x01,0x05,0x0F
00012	11	Digital output	Read/Write	0x01,0x05,0x0F
00013	12	Digital output	Read/Write	0x01,0x05,0x0F
00014	13	Digital output	Read/Write	0x01,0x05,0x0F
00015	14	Digital output	Read/Write	0x01,0x05,0x0F
00016	15	Digital output	Read/Write	0x01,0x05,0x0F

Address 3X	Channel	Function	Attribute	Command
30101	0	Digital output count low bit	Read	0x04
30102	0	Digital output count high bit	Read	0x04
30103	1	Digital output count low bit	Read	0x04
30104	1	Digital output count high bit	Read	0x04
30105	2	Digital output count low bit	Read	0x04
30106	2	Digital output count high bit	Read	0x04
30107	3	Digital output count low bit	Read	0x04
30108	3	Digital output count high bit	Read	0x04
30109	4	Digital output count low bit	Read	0x04
30110	4	Digital output count high bit	Read	0x04
30111	5	Digital output count low bit	Read	0x04
30112	5	Digital output count high bit	Read	0x04
30113	6	Digital output count low bit	Read	0x04
30114	6	Digital output count high bit	Read	0x04
30115	7	Digital output count low bit	Read	0x04
30116	7	Digital output count high bit	Read	0x04
30117	8	Digital output count low bit	Read	0x04
30118	8	Digital output count high bit	Read	0x04
30119	9	Digital output count low bit	Read	0x04
30120	9	Digital output count high bit	Read	0x04
30121	10	Digital output count low bit	Read	0x04
30122	10	Digital output count high bit	Read	0x04
30123	11	Digital output count low bit	Read	0x04
30124	11	Digital output count high bit	Read	0x04
30125	12	Digital output count low bit	Read	0x04
30126	12	Digital output count high bit	Read	0x04
30127	13	Digital output count low bit	Read	0x04
30128	13	Digital output count high bit	Read	0x04
30129	14	Digital output count low bit	Read	0x04
30130	14	Digital output count high bit	Read	0x04
30131	15	Digital output count low bit	Read	0x04
30132	15	Digital output count high bit	Read	0x04

Address 0X	Channel	Function	Attribute	Command
00001	0	Digital output	Read/Write	0x01,0x05,0x0F
00002	1	Digital output	Read/Write	0x01,0x05,0x0F
00003	2	Digital output	Read/Write	0x01,0x05,0x0F
00004	3	Digital output	Read/Write	0x01,0x05,0x0F
00005	4	Digital output	Read/Write	0x01,0x05,0x0F
00006	5	Digital output	Read/Write	0x01,0x05,0x0F
00007	6	Digital output	Read/Write	0x01,0x05,0x0F
00008	7	Digital output	Read/Write	0x01,0x05,0x0F

M1005 Series Remote I/O Module Modbus Mapping Table

Address 1X	Channel	Function	Attribute	Command
10001	0	Digital input	Read	0x02
10002	1	Digital input	Read	0x02
10003	2	Digital input	Read	0x02
10004	3	Digital input	Read	0x02
10005	4	Digital input	Read	0x02
10006	5	Digital input	Read	0x02
10007	6	Digital input	Read	0x02
10008	7	Digital input	Read	0x02

Address 3X	Channel	Function	Attribute	Command
30101	0	Digital output count low bit	Read	0x04
30102	0	Digital output count high bit	Read	0x04
30103	1	Digital output count low bit	Read	0x04
30104	1	Digital output count high bit	Read	0x04
30105	2	Digital output count low bit	Read	0x04
30106	2	Digital output count high bit	Read	0x04
30107	3	Digital output count low bit	Read	0x04
30108	3	Digital output count high bit	Read	0x04
30109	4	Digital output count low bit	Read	0x04
30110	4	Digital output count high bit	Read	0x04
30111	5	Digital output count low bit	Read	0x04
30112	5	Digital output count high bit	Read	0x04
30113	6	Digital output count low bit	Read	0x04
30114	6	Digital output count high bit	Read	0x04
30115	7	Digital output count low bit	Read	0x04
30116	7	Digital output count high bit	Read	0x04

8. After sales service and warranty

Smacq Technologies. Co., Ltd. promises that its products are under warranty. If the product malfunctions during normal use, we will provide free repair or replacement of parts for the user. For detailed warranty instructions, please refer to the warranty instructions inside the packaging box.

Except for the warranties mentioned in this manual and warranty instructions, our company does not provide any other express or implied warranties, including but not limited to any implied warranties regarding the merchant ability and fitness for a particular purpose of the product.

For more technical support and service details, or if you have any questions while using this product and this document, please feel free to contact us:

Phone: (86-10) 52482802 E-mail: service@smacq.com Website: http://www.smacq.com http://www.smacq.cn

9. Ordering information

Main Equipment

Model	Description
M1001	6-channel isolate digital input, 4 C-type Relays
M1002	4-channel non-isolate digital input, 8 A-type Relays
M1003	16-channel isolate digital input
M1004	16-channel isolate digital output
M1005	8-channel isolate digital input and 8-channel isolate digital output

Standard Accessories

Model	Description
TB13-3.81	Bolt terminal connector, 13 positions, 3.81mm
SDIN	DIN-Rail mounting bracket

10. Document Revision History

Date	Edition	Remarks
2018.08.22	Rev: A	First release.
2019.04.10	Rev: B	Second edition revision.
2021.08.15	Rev: C	Third edition revision.
2024.07.03	Rev: D	Modify errors in some command descriptions.